
Lag conditional response probability
lag_crp.RdProbability of recalling an item as a function of its lag from the previous recall, conditional on it being available for recall.
Usage
lag_crp(
data,
lag_key = "input",
count_unique = FALSE,
item_query = NULL,
test_key = NULL,
test = NULL
)Arguments
- data
Merged study and recall data.
- lag_key
Name of column to use when calculating lag between recalled items.
- count_unique
If TRUE, possible transitions of the same lag will only be incremented once per transition.
- item_query
Query string to select items to include in the pool of possible recalls to be examined.
- test_key
Name of column with labels to use when testing transitions for inclusion.
- test
Function that takes in previous and current item values and returns TRUE for transitions that should be included.
Value
Results with subject, lag, prob, actual, and possible
columns. The prob column indicates conditional response probability. The
actual column indicates the count of transitions actually made at a given
lag. The possible column indicates the number of transitions that could
have been made, given item availability (previously recalled items are
excluded).
Examples
# All transitions included
raw <- sample_data("Morton2013")
data <- merge_free_recall(raw, study_keys = list("category"))
head(lag_crp(data))
#> subject lag prob actual possible
#> 1 1 -23 0.02083333 1 48
#> 2 1 -22 0.03571429 3 84
#> 3 1 -21 0.02631579 3 114
#> 4 1 -20 0.02400000 3 125
#> 5 1 -19 0.01438849 2 139
#> 6 1 -18 0.01219512 2 164
# Excluding the first three output positions (need to include non-recalled
# items specifically so they aren't excluded as possible items to recall)
head(lag_crp(data, item_query = "output > 3 or not recall"))
#> subject lag prob actual possible
#> 1 1 -23 0.00000000 0 1
#> 2 1 -22 0.20000000 1 5
#> 3 1 -21 0.00000000 0 21
#> 4 1 -20 0.03571429 1 28
#> 5 1 -19 0.02777778 1 36
#> 6 1 -18 0.01694915 1 59
# Including within-category transitions only
head(lag_crp(data, test_key = "category", test = function(x, y) x == y))
#> subject lag prob actual possible
#> 1 1 -23 0.04347826 1 23
#> 2 1 -22 0.05128205 2 39
#> 3 1 -21 0.05454545 3 55
#> 4 1 -20 0.05357143 3 56
#> 5 1 -19 0.01315789 1 76
#> 6 1 -18 0.02061856 2 97