Lag conditional response probability
lag_crp.Rd
Probability of recalling an item as a function of its lag from the previous recall, conditional on it being available for recall.
Usage
lag_crp(
data,
lag_key = "input",
count_unique = FALSE,
item_query = NULL,
test_key = NULL,
test = NULL
)
Arguments
- data
Merged study and recall data.
- lag_key
Name of column to use when calculating lag between recalled items.
- count_unique
If TRUE, possible transitions of the same lag will only be incremented once per transition.
- item_query
Query string to select items to include in the pool of possible recalls to be examined.
- test_key
Name of column with labels to use when testing transitions for inclusion.
- test
Function that takes in previous and current item values and returns TRUE for transitions that should be included.
Value
Results with subject
, lag
, prob
, actual
, and possible
columns. The prob
column indicates conditional response probability. The
actual
column indicates the count of transitions actually made at a given
lag. The possible
column indicates the number of transitions that could
have been made, given item availability (previously recalled items are
excluded).
Examples
# All transitions included
raw <- sample_data("Morton2013")
data <- merge_free_recall(raw, study_keys = list("category"))
head(lag_crp(data))
#> subject lag prob actual possible
#> 1 1 -23 0.02083333 1 48
#> 2 1 -22 0.03571429 3 84
#> 3 1 -21 0.02631579 3 114
#> 4 1 -20 0.02400000 3 125
#> 5 1 -19 0.01438849 2 139
#> 6 1 -18 0.01219512 2 164
# Excluding the first three output positions (need to include non-recalled
# items specifically so they aren't excluded as possible items to recall)
head(lag_crp(data, item_query = "output > 3 or not recall"))
#> subject lag prob actual possible
#> 1 1 -23 0.00000000 0 1
#> 2 1 -22 0.20000000 1 5
#> 3 1 -21 0.00000000 0 21
#> 4 1 -20 0.03571429 1 28
#> 5 1 -19 0.02777778 1 36
#> 6 1 -18 0.01694915 1 59
# Including within-category transitions only
head(lag_crp(data, test_key = "category", test = function(x, y) x == y))
#> subject lag prob actual possible
#> 1 1 -23 0.04347826 1 23
#> 2 1 -22 0.05128205 2 39
#> 3 1 -21 0.05454545 3 55
#> 4 1 -20 0.05357143 3 56
#> 5 1 -19 0.01315789 1 76
#> 6 1 -18 0.02061856 2 97